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LIST OF SYMBOLS AND ABBREVIATIONS

Notation

a proportional to, attenuation coefficient
= distributed as

E approximately equal

E[-] expected value of -

var[ -] variance of

cov[-] covariance, especially for vectors
u ‘ E[ 1, mean

o standard deviation=var%, or scatter
kV kilo volts

MV mega volts

[R] Angstrom, 10710 meters

e electron charge

Mg mass of electron

h Planck's constant

c speed of light

X wavelength

§] voltage

J current

0 specific gravity

u specific attenuation coefficient

T specific absorption
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1. INTRODUCTION

The use of composite materials in light weight high performance
components has become increasingly more popular [Reference 31], especially for
aircraft components. Some of the advantages they offer over conventional
materials are their increased stiffness to weight ratio while resisting
to extreme environmental conditions, such as high temperature and
chemical corrosion. Common to such components is their complicated
internal structure.

Examples of such components are carbon-carbon composites which
form parts of rocket motors (fabricated from three dimensional woven
preforms) and engine turbine blades with internal cooling passages.

Among the various non-destructive evaluation (NDE) methods X-ray
techniques are regarded as being very promising for detecting deep
subsurface flaws.

The success and fine resolution of computer aided tomography (CT)
scanners in medical diagnosis [References 16, 17, 19, 41] for the detection of
tissue density abnormalities in complex anatomical structures prompted
the interest in how this technique might be adapted to serve as a new
NDE tool. However, many of the objectives and the structure of certain cost
functions and the degree of variability of structures to be examined
distinguish the NDE environment from the medical. Thus, an investigation
and somewhat different analysis of the performance of Tomography when
applied to the NDE environment is called for.

One of the first questions which arise in this new context concerns



the understanding of the relation between the complexity of a test object
and the number of projections (scans) necessary for detecting abnormalities.
Intuitively there abpears to be a relationship. Consider first the problem
of detecting a void in a homogenous cube by taking a face-on X-ray
projection. Apparently a single projection would suffice to detect the
presence of that void, although some uncertainty would remain regarding

its precise three dimensional location,

Alternatively consider the human head with its variable geometry
and the many different materials with variable X-ray density of which
it is made up. Here the detection of a slight abnormality-even with
perfect measurements - would not be possible with a single projection.

This is recognized in CT-scanners which use of the order of 100 projections
for image reconstruction.

Some of the materials of interest for NDE appear to have an intermediate
level of structural complexity, when compared with above examples.
Consider for example the rocket nozzle shown in Figure 1.1. A counterpart
in terms of complexity, in the medical environment, is apparently the
human breast with its glandular structure. It is interesting to note
that for mammography two projections of the compressed breast provide
often adequate diagnostic information and seem to be preferred over
tomoqraphic methods. These observations suggest to investigate the
possibility to examine also composite materials with an intermediate
level of scans (projections), say two or three [Figure 1.2].

In NDE of composite materials, where often a Targe number of similar

parts are inspected, further aspects enter consideration of limited scan
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Figure 1.1: Schematic of a Cylinder manufactured from layers
of woven carbon fibers. In this example the
Tayers follow an Archimedes spiral. Interfaces
are particularly susceptible to contain cracks.
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Figure 1.2: Examples of 2-scan pencil beam and 3-scan fan beam
arrangement. For clarity only one X-ray source 1is
indicated in each example.
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tomography. For example it appears that relatively precise prior
information about a test object is available and should be used.

Another aspect is the desire to reduce scanning time for high speed

NDE. The questions are: how can this be accomplished and what are the
limitations of possible techniques or should this techhique be combined
with other techniques such as full CT scanning of suspicious parts.

In order to respond to such questions a systematic approach is necessary.
For the particular nroblem of flaw detection by radiographic techniques
modern estimation theory provides this systematic approach.

The first requirement in the analysis through estimation theory is
the development of models of phenomena which are capable of mathematical
analysis. Typically, we start out with very simple models which show
some select major propertiés of a problem. Then progressively other
phenomena are incorporated into the simpler models and their performance
degrading or improving properties are studied.

Following this concent we start out (Section 2.1) with some basic
considerations about projections and solutions to the full-scan CT.

Next we introduce basic considerations and a description of what could

be regarded as limited scan CT for discrete image elements; this is followed
by the introduction of a probabilistic generalization. At this point

in Section 3 it becomes important to study in more detail the basic
physical phenomena of X-ray generation, absorption, scatter and detection
before moving on to an analysis of the impact of these on estimation
(Section 4). As we go along we develop the necessary models based on

the basic physical phenomena and give approaches to optimal or suboptimal
estimation. Finally in section 5 we give a comparison of the performance

of the full scan with the Timited scan technique.



2. BASIC CONSIDERATIONS ABOUT PROJECTIONS
2.1 Use of Projections in Image Reconstruction

The most basic way to study properties of X-ray images begins with
the analysis of a highly idealized situation. As shown in Figure 2.1
the projection (line integral) at every point s for a given projection

angle 6 is discribed by the 1inear model [Reference 10]

b
P f(s) = s flsu (o) + tnfe)] dt (2.1)
a
where
u{e) = (cos @, sin e)T (2.2)
n(e) = (-sin g, cos e)T

Roughly, this quantity Pe f(s) is measured in CT. In full scan CT the
problem is to reconstruct f[su(s) + tn(e)] = f(x,y) from many projections

Pei. This problem has first been considered by Radon [Reference 34] and many

methods for solving this problem approximately are available today [Reference [17].
Since the projection as defined in (Equation 2.1) is a linear transform of

flx.J it is appealing to approach the inversion (reconstruction) by a

linear transform. Using a linear reconstruction scheme has many advantages

on an analytic level and from a numerical point of view. A method which

has become particularly popular in medical CT-scanning is the filtered

backprojection method which provides one such linear transform of

measured projections.

The filtered backprojection method is specified in the following way

[Reference 10]. Define the backprojection operator Bi for direction 8; by

[B; (v)1(x) =y(si)==y(x1cosei 4 xzsinei). (2.3)
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Relation of picture elements a(2) to projection b(k).
From the area of intersection of the receptive field of
detector k the elements of the matrix A may be computed.
For the general relation shown analytic approaches are
difficult.



Then, for projection i, filter the measurement with the (noncausal) filter

“i(si) to yield a smoothed projection Bi(si) = Pe f(si)*“i(si) and finally
.i

average over all projections 8 to obtain an approximation f[x] of the

original f[x] as

[B; (P, f%a;)1(x) (2.4)

fx] =]ﬁ :
1

1~ =

i

which, as shown by Davison [10] equals also

1
m

.i

nes 3

(B fra )k w (54)) (2.5)

where <, > indicates the inner product. In this case it is convenient

to regard

B_i ay ](i) (2.6)

nes 3

Flx) = [J;

as the point response function of the method - a point function located

i=1

at x=0 would precisely generate it. Note that the approximation in (2.4) is

therefore equivalent toa 2-dimensional convolution (smoothing) of the original

f(x) by means of the point response function F(x). Typically the filters a; are smooth-

ing the projection data Teading to an image which is a smoothed version of the original.
As we mentioned before, the filtered back projection method is one

particular method for finding a linear transform of measurements. The

method could easily be generalized by assuming oy to be nonstationary,

in s or by assuming a more general linear transform than the filtered back-

projection, Bi“i’ say, by a general 2 dimensional weight function. In section

section 4 we will discuss some indication in which way one may wish,

to modify the filtered backprojection method. One of the conveniences of

the filtered backprojection method, its numerical simplicity, would be Tost when

more general weight functions are used. For example, convolution as need in the



filtered backprojection, can be executed very fast in the Fourier domain.

An interesting aspect of the choice of different filters is the
following urcertainty nrinciple. Consider the reconstruction of a
function f(x) by use of a desired point response function Q1(§) which
is normalized by s Q1(5)d§?1. Next assume the point response function
to be scaled by 01?5)=t2Q(t5), t>1, which increases spatial resolution

while preserving the normalization. Then, while minimizing the error

between Qt and its approximation 1/m ZBi(ati) for all filters Gyio that
is minimizing for all t>1 with resnect to (“ti) the quantity
7 [Q,- 1 B, (a, )12 (2.7)
D ) e T Y E
implies [10]
1 1 A 1 2
GRQUSE L NONI IS L O (2.8)

D
Roughly, this implies the product of spatial resolution and contrast
resolution (error) are bounded (from below) for increasing spatial resolution.
This result has a similar character as one arising in a stochastic environment
(Section 2.3).

After this basic introduction into some of the aspects of filtered
back projection we will turn to the limited scan problem. This will give
the ooportunity to introduce aspects unique to discrete representation of

picture elements.

2.2. The Tlimited scan approach - deterministic aspects
Similar to the one before we will consider the arrangement shown
in Fiqure 2.2. However instead of using continuous functions f we consider

picture elements (nixels) over which the function is constant



f(x,y) = p(i,j)s; id £ x < (i+1)d (2.9)
jd <y < (j+1)d
0 ; otherwise
Also, we replace the line integrals defining projection P in equation (2.1),

be integrals over narrow stripes of width A and area A and evaluate

P f(s)=17r57 f(su

u, +tn )dudt (2.10)

/
A
We may select only discrete values of s in the direction of ge which is

expressed by
s=k - A (2T

In this case we can stack all p(i,j) into a vector a by setting
a(g) = o(i,j), 2 = n(i-1) + j as shown in Figure 2.2, 1<i,j<n.
Similarly stack all 5ef(kA) for all directions of & into a vector b
and express the linear relationship between a, the pixels and b, the

measurements by

b = Aa (2.12)

Here, the reconstruction problem is to find a given b. Clearly for
arbitrary A a solution need not exist (inconsistency), there may be a
unique solution - or infinitely many.

A general solution to (2.12) is given by [35].
a=Ab+ (H-I)z (2.13)

where A~ is any generalized matrix inverse (g-inverse) of the M x N matrix
A, satisfying A A"A=A, H = A"A, and z is arbitrary. The solution is
complete if A™ has maximum rank regardless of rank [A], that is rank [A™]

min (M,N). Note that rank [A] need not be maximal e.g. rank A<min[M,N].

10



Since we assume Equation (2.12) to be constructed from Equation (2.10)

consistency of solution will at the moment not concern us (here it may be used to

check numerical accuracy). What does concern us is the possible uniqueness
of solutions in Equation (2.13). Clearly, if H-I a is unique, and required
rank [A] = rank [H ] = N. These relations suggest the following terminology:
the full scan provides us with rank[A]=N, while the Timited scan technique
is one which provides us with rank [AJ<N.

We will pursue now limited scan techniques somewhat further. For
a general matrix A it may not be easy to find its rank numerically.
However it is useful to look at certain special cases for which the rank
can be determined analytically. For this purpose consider the arrangement
of projections shown in Figure 2.3. For squares with unit area the matrix

A in Equation (2.12) becomes

n-times
[ B a
1111
18 N-times
1111
A = 1111 (2.14)
1 1 1 1
1 1 1 1
1 1 1 1 N-times
| 1 1 1 ]J

For this matrix we have M=2n, N=n2 and, as can be shown easily by

elementary row operation, rank[AEM-1. (We remark - if the width

of stripes for projection in Equation 2.11 is made smaller rank A=2n-1 regardless of M)
An interesting question concerns now the part (H-I)z in Equation (2.13)

since this part is independent of measurements b. In particular we are

interested in understanding the pattern of values of pixels p(i,j) which

correspond to this part. This problem may be approached in the following

11
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Fiqure 2.3: Relation of picture elements (pixe]s} p(i,j)=a(r)
to projections b(k) for 2-scan technique.

density a(2)=0

density a(1)=2- m
Il

l
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Figure 2.4: A basic pattern which is not observable bv the 2-scan

technique of Figure 2.3. This pattern can_be moved into (n--])2
position and forms a complete basis for all unobservable

pattirns (assumption of shift in only multiples of the smallest
unit).
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way: we look for a set of k Tinearly independent patterns with k= rank [H-I].
These (non-unique) patterns correspond to a basis in the non-observable part

of the space of a and may be regarded as basic non-observable patterns. One
solution for a set of basis vectors is one corresponding to the patterns shown

in Figure 2.4. There are clearly (n-])2 such patterns, each of which is linearly
independent of all others. In order to show that this set is also complete

(e.g., spans all of (H-1)z)find rank [H-I]. Now since (I—H)2

=(I-H), that is,
(I-H) is idempotent, and rank [H] < rank [I],
rank [I-H]=trace[I-H]=trace[I]-trace[H] (2.15)

Furthermore

rénk [H]=rank[A"A] = min(rank[A 1, rank [A])
= rank [A] (2.16)

since rank [A"] > rank [A] (35). So we have rank [H]=M-1 =2n-1.

Thus with trace [I]=n2 we obtain from Equation (2.15)
-2 L 2
rank[I-H]=n"-(2n-1)=(n-1) (2.17)

Hence the (n—])2 pattern as shown in Figure 2.4. form a complete basis of
the unobservable space. In other words, all other unobservable patterns
can be formed by Tinear combinations of these basic patterns. Some
examples are shown in Figure 2.5.

The consequence of this above result is, one should avoid positioning
of objects, which are to be examined, in such a way that critical components
form these basic patterns. Actually, one should avoid all positions which
form any Tinear combinations of these basic patterns. For simple objects
with only few critical places this may easily be judged. In the more

general case, when there are many critical locations one should write down

i3



Figure 2.5: An example of an unobservable pattern generated by the
linear combination of basic unobservable patterns (2-scan
technique), of Figure 2.4.

three scan directions

Figure 2.6: A basic unobservable pattern for the three scan
directions shown.



the projectionmatrix L of just these k locations and examine whether the
rank of this projection matrix is equal to 2. If so there is no problem

in detecting abnormalities. If, however, rank [L]<e it is either necessary
to position an object differently or to take additional measurements until
rank [ L]=2.

A11 the considerations discussed here carry easily over to the three
scan technique. In order to obtain a simple matrix A here it may be more
usuful to consider six cornered pixels giving an arrangement 1ike in
honey combs. For such an arrangement the corresponding matrix A is easily
written down for a given range of pixels and allows again analytic
evaluation of its rank. From analogy considerations to the two-scan
technique a set of basic unobservable patterns will have the shape shown
in Figure 2.6.

For the fan beam 2-scan technique the choice of a convenient shape
of pixels is somewhat more difficult. But consider that this arrangement
corresponds to a collinear transformation of the parallel beam configuration
as shown in Figure 2.7 and may thus be analyzed similar to the parallel
beam problem. In some situations it may be useful to combine pixels
especially near the X-ray source if it is desired to maintain approximately
constant pixel area. The same approach of a collinear transformation
can be taken for the 3-scan technique (Figure 2.8 ). Al1 of above
results will thus not change since (except for the focal point) they
are in a 1-1 correspondance to the parallel beam configuration.

In summary, the complete solution to the inverse problem
b=Ax is given by Equation (2.13). It is clear that for an increasing
number of pixels the solution space x grows very fast regardless of the

spatial resolution of the detectors (Equation 2.17). Thus, in order to say

15
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Figure 2.7: Collinear transformation, as in perspective, can be
used to transform the 2-scan parallel beam projections

into a fan beam geometry with X-ray sources at Fl and FZ'
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Figure 2.8: Provided that all three X-ray sources F., F,, F, lie on a
straight line a collinear transformation of the parallel beam
geometry permits to use a transformed honeycomb pattern for picture
elements while maintaiging the projection matrix A simple.



more about x given b more constraints have to be placed on X. Beside the
introduction of additional scans in new directions, this space can be
constrained in a probabilistic way and is subject of the following section.
2.3 Probabilistic approaches

This section starts out with an exposition of the problem in a Bayesian
framework. Then, a simple model for quantum mottle in measurement is intro-
duced and approximations for dealing with the nonlinear relationship between
image and measurements are developed. Next, two limiting situations and their
value for the limited scan problem is assessed.

One Timiting situation assumes large measurement noise - the other
perfect measurements. In this latter case the stochastic nature of the problem
is maintained by assuming an object of constant average density, but with
random variations of this density. It is shown, for the two-scan technique,
that an optimal detection scheme is computationally not feasible and that one
version of a suboptimal scheme which uses the correlation structure of measure-
ments discriminates quite well against flaws.

Another suboptimal approach, neglecting the correlation structure of
measurements, is shown to perform similarly well. In this approximation, the
distribution function of certain random variables remains unchanged except for
the mean, when alternative hypotheses are made (presence vs. absence of a flaw).
With this suboptimal approach a sequential probability ratio test is ultimately
developed and an example of its performance is given. The main conclusion is
that for most materials with random density variations in the percent range, a
rather large number of scans has to be performed in order to decide about the
presence of flaws. For the example given, (with rather large quantum mottle)
this number comes closestto the number used for full scan tomography. However,

the average cost due tousing this procedure is shown tobe small, almost independent of

17



the loss which would arise with failure of the component due to presence of
a flaw, simply because the probability of errors is extremely small.

Let us turn now to the exposition of the new framework. Probabilistic
considerations enter the limited scan and the full scan techniques in
several ways. Two important aspects are the well known quantum mottle
and the, possibly not so obvious, random material density variations. The
latter may result from variations in chemical composition, microporosity
or, on a still larger scale, from variations.of location of fibers such as
in woven performs.

As before we consider the evaluation of (the absorption due to) pixels
p(i,j) represented by a vector o given some measurements b. This time
however we have a probabilistic description of the absorption of the
pixels and a probabilistic description of b even when a is fixed; this
latter description accounts for uncertainty due to quantum mottle. More
formally we assume to know the distributions p(a) and p(b|a) and wish to
obtain the distribution p(gjg). This problem is solved formally by Bayes

rule

(2.18)

In practice, solving equt. (2.18) can be difficult or even impossible.
This is due to the necessary integration in the denominator of Equation
(2.18). For our purposes of image analysis this integration has to be

¢ — 106 dimensional space when images with 100x100

performed over a 10
or 1000x1000 pixels resolution are desired.

Several approaches exist to dealing with this problem. Mainly, they
are based on approximations. First, one may try to replace the general

distribution with certain types of analytic approximations which then allow

18



analytic integration. Second, especially when the prior distribution is
"flat" such as when a is highly uncertain, p(gjg) can approximate the
shape of p(a|b) (the denominator, when the measurements b are given
reoresents merely a scaling). We note that maximizing p(gjg) leads to
the so-called maximum Tikelihood (ML) - estimator which has often many
desirable properties.

The approach based on analytic approximations uses distributions
for which the posterior p(a|b) belongs to the same simple family of
distributions as the prior p(a). However the distribution pair p(bla)
and D(g) need not belong to the same family of distributions and are
called conjugate. Typically, these conjugate pairs are used for sampling
schemes for which b is a linear function of a. If this condition of
linearity is not met (as in X-ray imaging) further approximations are
necessary to estimate a.

At this point an important aspect of estimation should be clarified.
Estimation is closely linked to cost structures in a problem. For
example, an estimate of a quantity is a good (bad) estimate if the
expected cost associated with it is small (large). For many reasons the
quadratic loss functions in the error of an estimate arises naturally, and
s used in analysis of many problems. Thus for an estimate g’of a

quantity x we associate often the loss

L(x) = (x-x)' M(x-x) > 0 (2.19)

and the risk (the average or expected loss over all estimates x)

~

E[L{x)] > 0 (2.20)

where M is some positive (semi) definite matrix. The matrix M will

typically reflect the particular cost structure in the neighborhood of the

19



true value x. The objective in estimation can now be viewed as the problem
of finding the minimum of E[L(X)].

After these preliminary remarks on finding probability density
functions and good estimates we may turn to the particular oroblem of CT-
scanning. First we wish to find an approximation to the nonlinear
relation of material density to photon count. A frequently used approximate
model assumes exponentially declining photon flux. Thus for a source

releasing Io photons a detector sees on the average
wp= E[1] = 1) exp (- 7 f(t,s) dt ds) (2.21)

The distribution of the photon count is well described by a Poisson

density

p(D) = et 5 s(1-k) (2.22)
k=0
When the photon count is large one can make use of a Gaussian approximation

F of the cumulative Poisson distribution P, e.q.
P(I <C) = F(I <C) + ¢ (2.23)

where ¢ is often negligible. For E[I] of more than a few hundred, which
will be a typical situation in X-ray imaging, this approximation is very
useful. Once we characterize the photon count by a Gaussian distribution
we need only to specify its mean and variance to specify the entire

distribution. For this case one has

o°p = EL(I-u )] = g (2.24)

Consider now the problem of estimating G= s f(t,s). It is well known
A
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that the ML-estimator of G formed by

éb= —en 1/To (2.25)

leads to biased estimators e.q. E[éb-G]=g¢0 [Reference 36]. This implies that a risk

of the type (Equation 2,20) is not minimized by é However it is easily shown

b
that correcting for this bias by using

G = éb-g (2.26)

does minimize Equation (2.20). Rockmore [Reference 36] gives for g (for the Poisson-

case)

g=] =l o g3 = +...Jr (2.27)

2uy 12u§

For us the problem exists that, due to the material uncertainties, we

do not know My 2 priori. So, again we have to use an estimator-
possibly one a posteriori. It appears that for the situation in limited
scan CT for NDE the bias could easily be made small relative to other

effects such as the uncertainty expressed by the standard deviation of

~

G.

The variance of G is given by [36 ] as

i It should be made clear, however, that this series expansion requires
for its convergence a pseudo-Poisson variate of I: namely it is
required that P[I=0]20. Since P[I=0]=e~®I for a Poisson variate this
auantity is indeed extremely small for u,> 100. The requirement
P[I=0FDcan be satisifed by rejecting any measurement with I=0. In
fact we can even afford to reJect all I<y /2 provided uI>100 For

example for uI'100 P[I<50]<1O So in a]] series expansion in which
we may need an estimate of 1 and replace it by I, convergence occurs

rapidly with Targe probability. It appears that with much larger
probability other effects would result in degradation of performance

of any practical estimation scheme than are due to above approximations.
Subsequent expansions are all based on this approximation.
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u 2 3
I MY 12uI

3z (2.28)

Thus even for "small" photon counts in the order of a few hundred
the ratio of g//v is only a few percent. Nevertheless it is easy to
correct - at Teast to first order - the bias by using the revised

estimator (for I large, say I>100)

N

6' = -an(1/Io) + 71—1— (2.29)
From some rough calculation (using a simple Tinearization technique and
a 4o threshold) one can evaluate performance for this estimator:
with only .01 percent probability does the residual bias exceed a
fraction f = 4//T of the uncorrected bias. This suggests that the ratio
of residual bias to standard deviation exceeds 2/1 in Jess than .01 percent
of all cases. One may argue further that of the order of I independent
measurements are necessary to detect with 95% probability such small
bias. Of course, if desired a still more sophisticated approach may be
used to correct bias but other uncertainties associated with the polychromaticity of
X-rays will become important suggesting a more rigorous modeling of
nonlinearities (Section 4.2).

Let us return now to the general problem of estimating p(a|b).
As we have shown, the relation between a and b are nonlinear - but we
discussed how, and under what conditions (e.g. I1>100) Tlinearization of
that problem becomes usuful. We may thus consider the linearized
estimation problem (1linearized around the measured b). For the Tlinearized
problem the probabilistic relation between a and b are (in contrast

to Equation 2.12) described by

p(a) = Ny . 2,) (2.30)
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and

p(bla) = Mupa)s 5p,(a)). (2.31)

As can easily be shown, due to linearization the second order moment
in terms of zb|a(a) is approximated by Zb[a(“a)' (If such an
approximation is insufficient certain iterative procedures described
by [Reference 21] can be used).

We are now in the position to solve approximately Bayes theorem
Equation (2.18); p(pjg) and p(a) are conjugate distributions which are
fully described by their first and second moments y and © respectively.
In this case the posterior mean Ha|b and covariance matrix Za|b are

found by the Kalman Filter algorithm [References 21, 37].

Ha|b Sl = Wb - A*Ea]’ (2.32)
W=z, AT [Axs AxT 4 zb]'], (2.33)
Za|b =By - W A*za. (2.34)
Here however
3b
W= B (2.35)
and with Eguation (2.29)
by = -an(L/I0) + 5 (2.36)
i

It is easily shown (Appendix A2.1) that A* is closely related to A in
Equation (2.12) by

e 14 A (2.37)
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being equivalent to a slight rescaling of the dependent variable b.

The convariance matrix Zb|a is, due to the independence of quantum mottle

between detectors, diagonal:

\)-I Q

z = V2 (2.38)

L O o
where from Equation (2.23) we may use for the estimates of vy the series

= b oes , 48

i el 2z
i i

x +o.. (2.39)

which converges with large probability rapidly (for u1>100)-

We are now in the position to answer some questions for the limited
scan problem. First let us consider the problem of using transmission
data which is relatively noisy due to quantum mottle rather than

material density variations. More formally assume

T x
x' A% 3 A IF o ol Zp|a X (2.40)

__ 12 _ 2
and Tet A = caI and Zbla = oy I. For the purpose of the current
analysis replace also A*by A (Equation 2.37) as this simplifies notation and
does not change any of the conclusions. In this case we can approximate

Equations (2.32)-(2.34) by

-2 ,T
- 2 A'A)y. + Wb =y + Wb
Ha|b = (I-ora Ob Ha Z ~Ha
z 2 =2 .7
W O 19 A
< 2 -2 T,y = 2
Zalb o (I-caorb A'A) gy I
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Roughly, what is seen in this algorithm is very similar to the unfiltered
backprojection method - data in b is evenly distributed in its effect over the
corresponding strip i over which measurement i has been taken, weighted by the
ratio of "signal" power (c2a) to measurement noise power v, .

Let us evaluate the useful range of above model. For our situation, assume
materials with By X% density variation over, say 5mm x 5mm pixels and assume
n = 100, corresponding to an X-ray path of 500mm. The standard deviation of a

projected measurement is

% = oo = 10x% 2.42
This quantity was assumed to be small compared to quantum mottle, e.g.,
o, < Vv 2.43

or by Equation (2.28)

21
Op < (UI) 2 2.44

We assume usually M > 100 and thus require
1

v?ﬂi; << (pI)_E 2.45
In this case, we obtain the requirement
0y << %8
or x<1. 2.46
As an alternative way to investigate the estimation problem, we may
check what happens if we perform very precise measurements, e.g., I, =+, Ii/IO+C1 in
Equation (2.36) and look at the simple 2-scan problem. In this case, we encounter
a difficulty with Equation (2.33). The matrix A*zaA*T + %p|a becomes singular
since rank [A] as defined is not maximum and Zbla +0. There are several ways
to deal with this situation. A simple possibility is to eliminate those rows
of A in equation (2.14) which are linearly dependent on all others; omitting
for example the last row would generate a new matrix A with maximum rank. Thus

we are again in a position to use, although with one less measurement (but without
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loss of information) Equations 2.32-2.34. Now we obtain

T v 2Tq-1 % ATr 1-1
Ya b [1- zaA [AzaA 1 A] .. R [~] b 2.47

ap = [1- 5, AT 171, (2.48)

Here we would again like to know how an estimate is modified by

By
perfect measurements b and to what extent the precision of this
estimate is changed.

For this purpose consider the model of equal uncertainty throughout
all oixels, and that no pixel depends on any other pixel (maximum

entropy). This corresponds to

2

Iy = o, I (2.49)
To investigate this problem we computed the matrices A, A AT, (A AT)_],
AT(A A)™! and AT(A AD)A for n = 1,2,3,4 (Tables 2.1. - 2.4). As

expected these matrices exhibited some simple patterns for the
distribution of their elements. Furthermore by checking the elements
for n=2 and n=3 a simple relationship of their values to n was found
and confirmed for n=4 and 5.

The matrices A and A AT are trivial and we refer simply to tables

2.1-2.4. Somewhat more interesting were the matrices (A AT)'] (which

we will use repeatedly), the update matrix AT( A AT)'] and the matrix
AT(~)']A which expresses improved precision in the description Ea|b

of the material. We found that only a few distinct values could arise
in the matrices and there is good reason to believe that these are

all possible values for any n. The values relate to the following:

the relation of one pixel to itself
the relation of one pixel to the stripe in which it is contained;

1
2
3. the relation of one pixel to another pixel within the same stripe;
4. the relation of one pixel to one in another strive;

5

and whether measurements relate to the side on which one strip
of measurements has been removed (recall the last row of A has
been omitted).
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TABLE 2.1: Matrices A, AAT, (AAT)ZY, aT(aaTy ™!, ATy 'a
for n=1; Note: det(AA')=1

$ RUN TOMOMAT

DIMEWSION OF N = 7
1
1.000
AAT=
1,006
IOGTs 01y D2y IER = S0 1.000 0.000 Q

(Aa" 4 =
1,000

AT (AR E =
1.000

AT (AN 1A =
i 5 BI0TE

S

TABLE 2.2: Matrices A, AAT, (AAT);1, aT(aah) ™Y, aT(aaTy 1A
for n=2; Note: det(AA')=4

PLUN TOMOMAT

IFENSION OF N = 7

1L.000 1040 D000 Q. G000
0.000 2.000 1,000 1L.000
1.000 0.000 1.000 0.000
AAT=
2:.000 Q.00 l.000
0.0C0 2.000 1,000
1.000 1.200 2.000
IGOT»l 025 IER = 7 0.250 4000 0

Can" ) =
0.750 0.2530 0,300
0,250 0.750  ~0.500
=0.500 ~-0,500 1,000
AT (AATYE =
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For these various matrix elements ts it has been found for nxn pixels

(see table 2.1-2.4) which are, ordered by magnitude
example of location

tg = (Eﬂ%l> relation for a pixel to itself
n
t] = to %%:T> .... for pixels within a stripe for side
with all stripes measured
t2 = t](ﬂ%l) within stripe for side with omitted stripe
t3 = t2 (%) between pixels not sharing a stripe
t4 =0 . for update from side with omitted
stripe
|M|:=|AAW = n2(n—1) determinant (2.50)

What is important here is the asymptotic behavior as n+ . It is seen
that, as one might suspect also from other considerations, the

behavior of these terms, is

to =~ 2/n

t] = 1/n
(2.51)

t2 = ]/n

2

t3 = 2/n

Checking some more the behavior of AT(A AT)—] suggest again a performance
of updating the pixels (except for the ones in the stripe corresponding

to the missing row in A) very similar to the filtered back projection

(Figure 2.9). Note, that the mean of a3 5 changes by

Buy i3 = b1.t2 + bjt] =(bi+bj)/n (2.52)
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Figure 2.9: Example for updating when b' = (1,0,0,0,0,0,0).
The element [1] is not observed as it must be linearly
dependent on all other values in b. This example is

obtained from AT(AAT)" in Table 2.4.
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Figure 2.10: Distributions of the quadratic terms Q and Q' where xTMx
is used. Q will typically arise in the problem
formulation associated with H0 and Q' with Hk' If however

a flaw ¢ at Tocation k is known a complimentary quadratic
form (x-e)TM(x-¢) can be set up. For this form the role« of
) and Q' are reversed.
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if both strioes i and j are measured. However it changes by

AT bi “ty 2b1/n (2.53)

for the column j in the image which contains no measurement - as the
corresponding observation in A has been omitted. Note that from Equation
(2.50)t] +tt, =t With regard to the variance for pixel a(i,j) observe
it declines only by a factor of (1-t0) which does not seem to be of much
significance. Note: Za|b is strongly diagonal although only of rank (n—1)2.
In order to detect and Tocate a change in density it will be required
to have a large change Buy relative to og. This is somewhat of a problem
as will be shown because t;gre is only weight b1.t2 added to the strip containing
all pixels p(i,j) i=1...n and weight bjt3 to the strip containing all pixels
p(i,3) i = 1...n (aside from those corresponding to the missing row in A).
Performance of a flaw detection and Tocation scheme, based on this information,
can now be approached by formulating a decision problem [Reference 11].
2.3.1 Decision theoretic approach
Let the parameter space @ in the presence of a single flaw (in

any pixel) consist of n2 values W, plus a value W, for absence of flaws.

The loss table L for decisions d0 e dn2 would possibly be
dO d] d2 S— dn2
Yo 0 e ee .... e
W] f g h h « s o e }:] (2.54)
W f h g
wn2 il IR e A Y g
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With regard to the values expressed in the loss table, f will probably
be the largest as the cost of missing a flaw may be deleterious.

The value of e would possibly be next since some more extensive
testing would be necessary to correct the false alarm or to loose the
good test object. Values g and h may be nearly the same, although

h may be slightly larger corresponding to the additional effort to
correct estimation of flaw location and insure it is not at a vital

point in the object. Hence we would typically have

f >> es>h>g (2.55)

In order to obtain a well specified flaw detection problem we set
up a risk minimization problem. For this we require some prior
estimator ¢, of the probability that W, occurs [flaw in pixel (i,j)].

When ¢ is the probability of no flaw and all other z; are equal

clw ) =¢ = -z, (2.56)

If we take decision dk with probability Pk the total risk becomes
[Reference 11]

.
Py 2(we,d ) =z'Lp (2.57)

D(E’d) r 2 5

2 B
k 2
The decision which minimizes ,(z,d) (depends on the estimate of

the distribution p(g)] is called the Bayes decision d*. 1In order

to minimize o(z,d) we need to choose a function §(a) and have only

to minimize, following [Reference 11]

E plw . 8(a)] z) plaw) (2.58)
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(Note here p(gjwk) may include the measurements b and may then be
written p(gjwk, b)). One slight problem exist now: clearly at the
Jocation of a void 1ike flaw both mean and variance will be smaller
than at other pixels and this should be expressed in u and ¢ ;

alwk alwk
in the extreme, both would have a zero component at the corresponding
locations. In this latter case the new distributions are obtained by
precisely omitting these elements (e.q., thekth element of “alw and the kth

k

row and columns in I are removed.) A second problem exists in specifying

alw
k
p(gjwk): As mentioned before, (under wo) Za|b is not of maximum rank but of
rank (n—1)2 due to the assumption of perfect measurements. Thus, a vector

a with (n—])2 components carries all information about the image and we need

to consider only this vector for any decisions (e.g., remove any two orthogonal

strips which do not contain a void). For our Gaussian model

- | - .
p(alw) = oyt 75 exe [ 2Tz (@t )]  (2.59)

|Z(k)l
where ¢ = (n—])2 under We (and ¢ = (n—1)2—1 under Wy s k # 0).

Now, minimizing Equation (2.58) with respect to a decision s(a) requires
to search over n2+1 possibly values of s(a) and to choose dk which
minimized Equation (2.58). The approach is unfortunately not feasible, simply
because of the size of zi], a (n—1)2 X (n—1)2 matrix.

Alternatively, decisions can also be based on the perfect
measurements b directly. This approach is slightly simpler but quite
similar. The main value of this approach is that it provides a
relatively simple way to evaluate performance of certain schemes.

This can permit one to suggest under what conditions measurements

are of value. For example, it is perceivable, that measurements bring so little
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information that it is not worth taking them - suggesting another
measurement technique should be used instead.
Consider the distribution of p(b). Since flaws can be located

in any pixel p(b) will be a mixture distribution

p(b|wj) (2.60)

p(b) = 5 ¢
]

The loss table is specified by

d0 d.l

wn |0 e
0 (2.61)

w] f g

where the notation of Equation (2.54) is used.
As to the model of p(gjwj) we assume all elements of b to be
linearly independent e.g. by forming A from A in Equation (2.74), by omitting
the Tast row. We may at this time neglect the (small) influence of
a void in one pixel on the covariance of b; however we do not neglect
the effect of a void on the mean Ly - Taking the best decision amounts

to minimizing

2
n
kzo Q,I:WQ 6(b)] Ck D(l_)_ |Wk)
2
5 = g | — 1 i k.
= L elw 8(b)] ¢ ~gnoy —expl- 5(b-py (k)" 2, (7)1 (2.62)

2w 2 |Z|;i

The advantage of Equation (2.62) over Equation (2.59) is the size of the matrix

B e it is only (2n-1) x (2n-1) in case of using A from the two-scan
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technique. Furthermore, we know explicit solutions to Zb_] = o;Z(A AT

L, = 021) from Equation (2.50) and |Zb| is also known.

Still it is difficult to find the Tocation of a flaw by minimizing 2.62:
for n2 pixels to be tested, each requiring evaluation of the exponent of (2.62),
amounts to the order of c-n4 (c=5...10) operations. Even for a modest n=100
the computational burden gets out of hand.
2.3.2 Distribution of quadratic and bilinear terms

We may approach the problem differently. Roughly,since we wish to minimize
Equation (2.62) p(gjwo) should be small if a flaw is present. We may then ask - how
large does a flaw have to be in order to make p(gjwo) small (relates to the
power to reject the null hypothesis).

For this purpose, we consider the two scan techniques and assume a
void within one pixel occupying a fraction ¢ of the area. Corresponding to

th and jth

this location (i,j) the measurements will be decreased in the i
strip by e, 0 < e < 1. Now, the distribution of the exponent of Equation (2.62) if W

is true (with the notation zb(wo) = Zb), is given by a XZ distribution, that is

Q= x5 xeCp g (20M) (2.62)
where

X = b-u
For (2n-1), large, XZn-] = N(2n-1, 2n-1). Thus, under w, and for large n,
p(gjwo) will be considered small (or too large for the model) in the rare

instances when

x' 5, x - en-1)] > T VT (2.64)
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where we will typically consider T=3...5 (Figure 2.10).
If however a flaw is present inequality (Equation 2.64) may easily come

true. In this event x will be changed to

x' = x - ¢[000..1..000..1...000]" (2.65)

where the nonzero components at Tocations k and £ express the void in two directions

of projections. The distribution of this new exponent Q' can be found by

-1 2
use of Zb =0, M

2([E9ﬂk(M)] + [row, (M)]x + Oa_zez(mkk+2mkg+mll)

(2.66)

[ - =2 T -
Q' =0, " xMx - 2e0y

Here, M is know to be (A AT)-1.

Although the distribution of Q is a
noncentral x2 a Gaussian approximation should be possible. Finding an
approximation or a bound would be interesting. In fact we know all the
mkl's and the covariance structure of x. A lengthy and tedious
operation (see appendix A2.2) using the approximations to the mko's in

Equation (2.50) yields an interesting result (k and ¢ are from orthogonal

scans) with regard to the variance of second term in Equation 2.66:

-2 -1
a

<
1l

var‘[(Zgod_2 rowk(M) + rowl(M))ﬁj :(25)2' 20

(
s o B2 -15822 (2.67)
EOa n EO'b g

Now, depending on the relative value of 2n-1 and y either the first
term in Equation (2.66) or the second one will generate most of the spread of
the distribution of Q'. For
€ = n
g;- =c >3 (2.68)

the term y will become dominant for the variance of Q'. (e.g. for very
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homogenous materials). The distribution of Q', when approximated by a
Gaussian distribution, is specified by its mean and variance. For the
mean [from Equation (2.66) and Equation (2.50)] and the variance when

equation 2.68 holds (very homogenous materials)

E[Q'] = (2n-1) + 2¢° oa-z ol
(2.69)
var[Q']= 8¢2 oa_2 L
implying
Q' -N(2n-1 #2625 "F 07!, 82 o P 0T (2.70)
while for the correct model
0 ~ N(2n-1, 2n-1) (22 7)

Both distributions are drawn in Figure 2.10. They show how much of the
distribution of Q' falls into a region which contains almost all of Q.

This implies, if we observe a value Q* which satisfies

|Q* -(2n-1)| > TV2n-T (2.72)

we are, depending on the threshold value T (T typically 3...5) almost
certain of the lack of fit of the assumed model. However, conversely,

when

|Q* -(2n-1)| < TV/2n-1 (2978))

there is still a good chance that this is simply due to the wide spread
of N' when using the false model. Thus a rough bound for accepting the
false model (decision dz, £#k) when Wy arises with probability Ty is, from

elementary considerations (Figure 2.10), use of Equation (2.70) and given value T,



Py < 2VZRT (1)) —
¥V ET

(2.74)

Conversely, the error probability P2 for rejecting the correct model is found

from normal integrals for T=3 to be about .1% Ly and for T=5 less than 10_6ck.

In order to demonstrate the results consider the following example

gy = 2% (material density variation)
e = 100% (a void over a whole pixel)
n =100 (number of independent detectors per scan)
T=5 (make P,<107°)

-1

In this case (g/oa)2 n = 25 and we obtain

4

P .08 - exp(-25/4) = 1.5 - 10 " = .15%

-l <

Note, however, how quickly P] could increase when the void does not fill
all of the pixel, but say only ¢ = 20%! We remark that in this event
the variance of Equation 2.70 could permit a better approximation. For this
latter situation, the approach presented subsequently, namely a
sequential probability ratio test, will be particularly useful.
From above numerical example it may appear that error rates are not always
low enough and it may appear desirable to reduce P], say by taking a
second set of measurements, possibly by rotating the object by 45 degrees.
However a new set of measurements is dependent on the previous set
and thus we cannot strictly assume for p scans

p cP, 0<c«l Vp > 1 (2.75)

-I <



Fortunately, there is evidence that for p<<n above aporoximation is good.
To illustrate this we discuss two considerations.

First we may try an educated quess about the distribution of Q'
when p scans are performed. The value y(p) corresponding to Equation (2.67)
is presumably proportional to p when p<<n. For example, in the derivation
for y(2) in apnendix A2.2 summation over terms of order n_] have to be
performed in proportion to the number of stripes, (there p=2), over laying
a flaw. Provided all other summations over terms of order n_2 contain
manv less than n terms, e.g. p<<n, they may remain small. This argument
hiriges of course on the assumption that terms corresponding to t; of Equation
2.50, for p>2, do not change much in their proportion when p changes.
This again seems plausible when n<<n.

A second interesting consideration is the observation of the
determinant of Iy The square root of the determinant is comparable
to volume in a space of random variables and is used for example as
a scale for the Gaussian distribution. Compare now from Equation 2.50 how on

-1
a

1
%

1 i =
the one hand |zb|5 o = M? depends on n, namely, | an(n ]). On the

|

other hand, when all off diagonal elements are omitted, obviously

|§b|1/2 ann—%, showing it smans comparable volume despite neglect of these terms.
Furthermore, when only a single scan is used, neglect of off diagonal

elements in z'b leading to E'b does not change the determinant since z'b is

diagonal (only the Teft upper quadrant of zj is used). Hence lz'b|1/2 = |§'b| =

n/2. This result is summarized in Table 2.5 for p=1 and p=2 scans. It shows

n
L . ..

the exponent of |z|? grows nearly proportional to p and omission of off-

diagonal terms (= considering dependency of measurements) changes the determinant

only by a small factor (compared to changes associated with changing n). This

40



observation is suggestive of similar behavior of these determinants for
2 <p<Knand is indicative of the usefulness of a stochastic model in which

p independent scans (evenly distributed around the object) are taken.

TABLE 2.5: Value of Determinants

pATh 2
~ n 2n-1
|Zb| n
|Zb| o n2(n—1)

From all these considerations, we expect the distribution of Q'

to "spread" only sTowly with p and to a first approximation we may use

Q' ~ n(pn+pezoa—2n_], ap ezoa'z L (2.76)

whenever 2€oa_]>> n and p<<n. It seems that in practical situation

this is only true for rather homogeneous materials and large flaws.

(If this condition is not satisfied the variance will be much smaller

and better bounds on detection of a flaw based on the method is possible).
In terms of a detection scheme based on the quantity Q' one finds

from elementary considerations (see Figure 2.10) the approximation

P](p)<cp = T fg_ exp {-p (ezoa_zn'])/8} (1-z)
V2 8
=T %a exp (-p <Fo,72/8)  (1-7) (2.77)
VZr €

in concordance withEquation (2.75). Observe how the product p€2 dominates

error rates; this is a typical statistical phenomenon.

These observations suggest to use,with some care, approximations
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leading to suboptimal decision schemes. Most importantly, it was
indicated how increasing the number of orojections can decrease error
rates. The observation suggests to use more projections - possibly
in a sequential fashion. Also for the purpose of the analytical
treatment of a sequential problem, the structure of the problem has
to be greatly simplified. Below we will discuss such a simplified
aporoach which may have the robustness necessary to obtain a valid
sequential approach.
2.3.3 Simplified models

A drastic simplification occurs when the correlation of measurements
is neglected - at least as far as the use of their precision matrices
are concerned. This is equivalent to considering only the marginal
distributions of b e.g. we assume

n(b) = T p(by) (2.78)

Clearly the marginals carry less information and thus any scheme
based on them will perform suboptimally. Conveniently, in this simplified
model measurement error is easily incorporated. Measurement error
may arise from quantum mottle due to the primary beam and mottle due
to scatter; scatter would introduce also a bias but we assume for
the time being to know that bias and correct for it. Thus measurements
are characterized for a single scan by

2

Uksok (2.79)

b = N(
when no flaw is present. When a flaw of fractional area e is present

in, say, pixel (i,j) one of the elements of b will change. For that

element, say at location £, in vector b we obtain from Equation 2.1C
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. 2
by N(up + €, 0p°) (2.80

For n scans the joint distribution in the absence of a flaw may be

written as — _
X1 2 7]
n )
p(bys bps - By) = N)fap) 21 (2.81)
2
3% In1
2
u
L P L “np_|

The exponent O of p(b;, by, .. pp) is well described by

0 ~ N(np, np) (2.82)

although the s1ight dependency of measurements will call for some
correction with small constants C_ (in dependence on ck]z), e.qg.,
Q- N((1+C])np, (1+C2)np). For the sake of simplicity of the analysis

this small effect is neglected.

On the other hand when a flaw is present we obtain approximations

for the distribution of Q' somewhat different from Equation 2.70. Similar to
Eauation (2.67) we comnute the variance y due to the cross nroduct between

e and x=b-u. This time however, due to using a diagonal matrix in (2.81).

the contribution of rows corresponding to Equation (2.66) is limited to these

diagonal terms. One obtains immediately y = (25/%)2 for a single scan

D
and for p scans, y = % (Ze/oﬁk)z, in concordance with the approximation

k=1
Equation (2.67).
The diagonal approximation Equation (2.81) is motivated by the assumption
of quantum mottle and the discussion following Equation (2.75). Here czk
9
expresses the noise due to material along the entire projection stripe

and will be of order nog plus the quantum mottle which is possibly

of comparable magnitude. Hence we will use the approximation for Q'
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P
Q' - N(np + £ (e/oy, )%, np) (2.83)

k=1
In other words this model neglects the product due to ¢ and x by virtue
D ——
of 4 3 (€/°k1)2<<np' For simplicity we will assume ng = 02 and obtain
k=1
for the presence of a single flaw
P 2
B (€/0k1) =p-cC (2.84)
k=1

Equations (2.83) and (2.84) suggest that the problem may be approached

analytically using the sequential probability ratio test (SPRT).

From [ 11 ] define for the kth single scan.
1
D (b ) exp(- »Q",)
1Yk k
z, = log = log{ |/—————— (2.85)
< Rlhy exo(-y Q)
where all Z, have the same assumed distribution as Z, and form
S ='2] Z;. Choose now the following constants
'|=
1,(1-%)
a =~ 109 Eqm log 0
I z
(2.86)
CS g
b =-log E—'+ log "1
1-¢

Where c_ is the sampling (scanning cost), f the cost if a flaw is

missed, and e if a good object is rejected. The auantities IO and 11

are given by, (using Equations (2.81), (2.82) and (2.85)) for p=1 scan

2
1
Ig = ~E[Z [W=wy] =75
(),
I, = E[Z|W=w,] = % (g) (2.87)

Then decide dO(no flaw) when s < a and d1 when s > b. If no decision
is reached increase R by one (next scan). This procedure requires on

the average (depending on w)
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|
7]
——
m|a
h
Ny
12

2 £
E[k|w=w0] ~ 2 (9) log —
€ s (2.88)

log %
S

Po

n

py = E[k|W=w,]

[
o
—
mja
S
N
[H
N
—
|la
h
N

scans. The Bayes risk p*(z) is, with A = max(f,e) bounded by

2
! B 1 = g2 B
p*(C) <CS ]og CS W) 2(€)CS ]og c (289)

S

For illustration consider a nxn = 100x100 pixels area with oq = 25 bt

this time a single small void with say € = 10% only(!). Further

assume the quantum mottle and other measurement noise 0; to be comparable

2 2

to the noise in the projection, e.q. B = 100 i The total noise terms in

the components of the measurement vector b are thus 2 x °§' The variance 02

in Equation (2.81) is then n x 2 x oé

ke
= 800 (%)2. For the cost

structure assume the cost of a decision error = 104 Cq and possibly
cg = 1$. Then the total risk per examination is
o= 1% x 4 1n 10 x 2<§>2 - $147.4 (2.90)

Similarly the average number of scans is 147.4. Such a large
number of scans is comparable to full tomographic scanning.

If we had assumed ¢ = 100%,as in the previous example,only 1.5
scans would be suggested on the average. In this case, however, the

model for I, and I in Equation (2.87) is not valid anymore since
2

£ >(n02
a

be considered Equation (2.87) has to be modified accordingly (crossterms leading

+ oi). The SPRT suggested is limited to e = 28%. When larger e have to

to y of Equation (2.67) become dominant). For some further discussion of this

example see also Section 4.2 where a crack of fixed orientation
relative to the object is assumed while the object may have any
orientation. In that case a drastic reduction of scans is possible.

We should remark, when the structure of the object is simple and well



known, the computational burden for implementing this procedure is

trivial as the inversion problem has not to be solved. Only the

forward problem - finding the projections of the object for any given

scan direction has to be computed one time by solving an expression of the type

b = Aa.
An interesting question is now how the number of flaws could be

determined. For a small number g of flaws, the number of possible

arrangements is of the order of n2q' Thus testing all of these

arrangements is usually impossible.

An alternative approach is based on the use of an expression (Equation 2.82),

modified to account for multiple flaws. From analogy, for g flaws
Q" = Nnp + q 1 (e/0;)%, np). (2.91)
i

Thus the mean of Q" shifts q times faster with q flaws. This information

can be used to estimate the number of flaws. Hence

p )
E[0" - no] /[_21(6/01-)2] - q (2.92)
];
and
var a = np/ [E (6/01)]2 a p-] (2.93)
i=1

Thus, depending on the desired precision of estimating q the number
p of projections can be chosen.

An alternative approach would be to observe the stopping time
when decision d] caused stopping. Obviously, when there are more flaws
one would expect a sequential sampling scheme to stop earlier - in fact -
after Py /q samples. A crude estimate of the number of flaws is

therefore with p observed ° the number of scans at termination, and d # dO'

~

q' = E[k/w=w] = single flaw]/ p (2.94)

observed
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One should be cautioned however when using estimate a'. The problem
is that 1ittle is known about the distribution of p observed. Already

the computation of E[p ] is a rather involved task - [Reference 11, section

observed
12] and 1ittle is known about its higher moments. Thus very little
can be said about the distribution of a' (with the exception of the
case q >> E[klw=w1]; in that case Equation 2.92 or 2.93 may be used).
The location of flaws seems to require searches over all n2
pixels. Fortunately it is unnecessary to form compound hypothesis.
One way is again to use expression of the type (Equation 2.91), and treat it in
precisely the same way we had used Equation 2.82 and 2.83 (or 2.91 respectively);

However, instead of assuming no flaw - we assume a single flaw. With

this assumption we compare the quadratic forms corresponding to the

single flaw model on all n2 pixels. When a flaw is encountered Q'is
expected to change by E[AQ'] = 1x ;(8/01)2. In this way one can proceed
to search for the next flaw until ; flaws are found.

A nroblem with this approach is again uncertainty in the actual
change AQ of 0 between hypothesis. From consideration of equt 2.69,

with x'Mx fixed (observed)

var [aQ] = p 0;2 var [2e x,] = 4p(€/ga)2 (2.95)

which we require to be small compared to EZ[AQ] * [p (e/oa)zjz. This
requirement will usually be met when Pq close to Py = E[k|w=w]] scans have
been nerformed (since this provided enough information to detect

a single flaw almost certainly.) The probability of error for the

detection of each individual flaw is approximately,

. 2
Pr [do |N=w]]: 2 & (cs/f) T:%T' (9> (2.96)
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For the example above Prex[d0|w=w]] :10'3 c'/(1-z') which may
be an acceptable level. Here ' is the nrior probability of a flaw
on the particular location - so typically it will be n_zg, leading to
Pro [dglW=w1 1077 2.

If termination of scanning is a random variable and g >1
suggesting that only few scans are performed - considerably larger error
probabilities would result. For the same reasons mentioned for finding
the properties of a' and the invalidity of aporoximation (Equation 2.96) in
such a case, such simple estimation of error rates for locating flaws

are not possible. In such a case one would also resort to some ranking

statistics of the estimated probabilities, further complicating analysis.

Some numerical studies (Monte Carlo methods) are suggested for evaluating
this method.

At this point we may begin to be interested in the evaluation of
the noise terms from a physical point of view. Especially, we have
realized that signal-to-noise ratio determines efforts of finding flaws.
The basic physics and technology are now addressed to resolve some
of the associated issues. Subsequently we will turn to aspects of

optimizing system performance e.g. minimizing (0/8)2.
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3. PHYSICAL ASPECTS OF PROBLEM

The physical aspects of X-ray radiography can be divided into
three major areas: (i) conversion of energy from high velocity
(relativistic) electrons into X-ray energy; (ii) absorption and scattering
of X-rays when trespassing matter; and (iii) detection of X-rays. This
natural division into three areas corresnonds to a simple modeling of
comobonents in primitive X-ray radiographic arrangement [Figure 3.1].
It will become clear later that such a strict association of physical
mechanisms with systems components is not adequate. Instead, for more
refined modeling, several physical mechanisms will have to be considered
within each component. Since quantitative description of some of above
mentioned areas is rather complicated it is clear that simultaneous
consideration of these physical mechanisms will contain a considerable
degree of uncertainty. How to cope with this uncertainty for the purpose
of systems analysis will be described in subsequent Section 4 and 5
This section will mainly address physical mechanisms and the relevant
technology as it affects describing dominant physical mechanisms; it wil]
indicate qualitatively the most important mechanisms to be
considered in modeling systems components for a particular arrangement.
3.1 X-ray Sources

Depending on required mobility and intensity of X-ray sources
either radioactive isotopes or tubes are used. Usually the X-ray
intensity available in X-ray tubes is several orders of magnitude higher
than in isotopes. Hence it often provides the X-ray source when

stationary equipment is permissable. For the high speed NDE environment
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Figure 3.1: Schematic of basic X-ray imaging components

Figure 3.2: Vectorfields E and H, after time t=r/c, due to acceleration

a of a positive charge at 0.
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tubes appear to be perferable, as will be shown, and hence we will
mainly concentrate on their performance characteristics and devote only
little time to radioactive isotopes.
X-ray Tubes
Since the discovery of X-rays the technology of dedicated X-ray

tubes has undergone considerable development. For different applications
X-ray tubes are tuned in different ways [References 5, 22, 32] and differ
in:

e spectral properties

e range of anode voltage and current

e beam shape and intensity

e mode of operation - pulsed versus continuous

e focal spot size and shape

e sStability of characteristics and 1ife expectancy

e power supply requirements (DC or radiofrequency for linear
accelerators)

e mechanical robustness

e anode material (Tungsten, Molybdenum, Silver, etc)
e stationery vs. rotating anode

e anode cooling{radiative vs. fluid cooling)

e Droduction of scattered electrons (which generate X-rays in areas
other than the focal spot)

e control of electron beam geometry (due to filament aging, space charge)

e cost

Some of the basic considerations which lead to the variety of tubes in
use today will now be given.

The earliest theory about the generation of X-rays is based on the
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concept developed by JJ. Thompson and Lorentz; this theory is based on
Maxwell's electrodynamics [Reference 8, Chapter 2]. According to this
theory an electron which is accelerated (or decelerated) radiates a
transverse electromagnetic wave (Figure 3.2). The electric field

E at distance r from an electron after a time r/c is given by

t - (3.1)

S o)

e sin @

c2 (1 - B cos 9)3
where a is the acceleration (or deceleration) of the electron with
relativistic speed v = Bc (0< B< 1), c the speed of 1ight in vacuum,
and e the (negative) electron charge. The magnetic field H has an
intensity proportional to the intensity of E with the direction

indicated in Figure (3.2). Thus, by use of Poynting's vector S

[Reference 46] the flow of energy is given by

S=FxH (3.2)

From these expressions it is apparent that roughly speaking
(assume B<<1), "Bremsstrahlung" will occur in a direction perpendicular
to the electron beam incident on the anode. If B is not much smaller
than unity the beam intensity in the forward direction ( cos © > 0) will

be Targer than in the backward direction.

Modelina X-ray Beams

One might further suspect X-rays to be polarized in a plane
passing throuagh the vector @. (Equation 3.1). However, when electrons hit a target
material deviations from this simple theory occurs: the electron is
not decelerated instantaneously but propagates within the anode material
along some random trajectory. Furthermore one has according to de
Broglie to consider the wave nature of electrons which constitute
wavelets with length comparable to internuclear distances. A

description of these relativistic quantum mechanical mechanisms were
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given by Sommerfeld (1929) and are in reasonable accord with results on thin

targets [Reference 27]; interesting is the observation of hard X-rays (most
penetrating being highly polarized while lower energy components of the X-ray spectrum
are not [Table 3.1]. We note at this point the relation between the shortest observed
wavelength Xmin in a spectrum generated by the tube with voltage U, as a conse-

quence of quantum mechanics, is determined by [Reference 32]

CAERCK: Urhy (3.3)

Typical X-ray spectra are depicted in Figure 3.3 and show maximal intensity

A .
min

in a band dx at 3/2 xm' .

in For a given supply voltage the intensity of the

spectrum may be approximated by an expression of the type

(x]_.' ]Y) . Ul u(r=a_ ;) (3.4)

min A2

I(A) = cZ min

by use of [Reference 8, p. 105] and dv =-cdx/x2. When it is desired to account also
for characteristic spectral lines at wavelength xj and partial absorption of X-rays

in the taraet. a more general model of the type

. NP
I(A) = w(a-r . )1 [1-za, e‘ai“‘xmin)]<$> + Jz by 6(2-;) (3.5)

where §(-) is Dirac's delta function and p 2 2 may be used.

From earlier discussion it might also be desirable to model partial
polarization of X-rays at high energy. Excluding the unpolarized fluorescent
Tines in the spectrum, this may again be accomplished by functions of the
YA

type e~ In a simple case such as with Kulenkampf's thin foil [Reference 8, his

Figure 1I1-20], the two

Table 3.1
THEORETICAL POLARIZATION OF THE CONTINUOUS RADIATION

Frequency Percent Polarization
= |

v Yoo 100

v = 3/4\)max 82

v = 1/2vmax 57

v = 1/4vmax 24

From [42].
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Figure 3.3: Schematic of typical X-ray intensities IA as function
of A and tube voltage (Tungsten target, after [ 8, p 38]).

fe]ectron

|beam f\~}

anode .
f___/_\ = ;:: - i o R = * X_Y.ay

[ = — e }beam swaying

A% ’

collimator

Figure 3.4: Problem of beam swaying due to wobble of target anode.
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components may be approximated by

I-”(A) = c-e _Y(A-Amin) I(a) (3.6)

Ilﬁx) = (1-c-e 'Y(A'Amin) I &)

0 <c <1

Following Comoton [Reference 8, p95, p111, p112] c would have to lie between
zero and unity. Further difficulties in describing X-ray intensity

arise from consideration of spatial distribution. Equation (3.1)

expresses already a dependency of X-ray intensity on spatial direction,

but there is an additional effect called the heel effect. This effect
arises in the following way: X-rays are generated in good part at

some depth in the target material. Hence, depending on the direction

in which they Teave the target they have to trespass different

distances of the target material and are filtered differently. Thus,

not only will the intensity change in dependence on direction o but

also in dependence on the direction ¢ [Figure 3.6]. Presumably these varijations
will be s¥ow functions of ¢ and ©. With this assumption and from

symmetry around ¢= 0 we may use as an approximation for I(x)

e—oo T g 0 0- OO
I1(x,0,4) = IO(A) 1 - (3.7)
¢ 0 h 6

in some neighborhood of 0=6, and ¢= 0. Sommerfeld, as cited by
Comnoton [Reference 8, p 114] (neglecting heel affect), suggests that near Anin
the angle of maximum emmision @0 should satisfy the differential

equation

= 03 (3.8)
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Figure 3.5: Example of possible focal spot X-ray intensity, viewed
face on through the pencil beam collimator of Figure 3.4.

(after [Reference 5]).

\ incident
¢ electron

i beam

1j,.A’-:::ceuI spot

Figure 3.6: In a fan beam geometry the apparent focal spot shave
debends on viewing direction
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For small g, % is approximated by

OO(Amin) = arccos 2. (3.9)

For A>Apin it is found experimentally and theoretically [Reference

8, p. 115] that for maximum X-ray intensity oo(x) <®0(A ). For

min
ilustration, for g= .25 ( =16.5kV, A . =.76A) 6, =60° . As far as
g(x) and presumably h(1) are concerned, it appears from Compton's data
(his Figure II-11) that they are not strong functions of ».
Another important variable in describing X-ray intensity is the
anode voltage. Understanding its effect on the X-ray spectrum is
important because slight variations of hardness may result in large
variations of intensity of X-rays trespassing an object. Two
references addressing this issue are Reference [5] and [22]. Kramers Reference
[26] finds also as a description of anode performance as a function of supply

voltage in relatively good accord with experimentation for the

efficiency n of X-ray generation

4q e’ -6,
n = = ﬁ;ﬁ'c3 Z-U =10 “Z U[kv] (3.10)
Mmy.... mass of electrons
e.... electron charge
2.... numerical factor of about 6
Z.... atomic number
h.... Planck's constant
C.... speed of light in vacuum

Thus for Tungsten target (Z=74) and U=100kV an efficiency of about .75%

oY/



js found. In concordance [Reference 32] gives a quadratic relation for the

intensity of the continuous spectrum to tube voltage U:

I =k U2

McGonnagl describes futhermore that the maximum of the intensity in

X-ray spectra (from tubes) occurs at about 1.5Am. corresponding to

in
2/3 of the supply voltage. These relationships suggest for the

dependency of IA(A) on U, at the high frequency end (where most power
is concentrated (under the condition of constant supply current of the

tube) fora band of width dx (Appendix 3.7)

3
I,(nU) = (3—0) L - %6) (3.11)

and for the quantum count density S in di

2
U U A
SA(A,U) = (Ua> SA(A . U—) EF-IA(A,U) (3.12)

When anode power Pa is limited, e.g., anode current is given by

I =P,/U, S is reduced in such a way that [A ppendix 3.2]

] J S(A,U,Pa)dx = SO(Pa) (3.13)
min
This is an important relation which suggest that for power Timited
anodes only the fraction of X-rays penetrating an object can be
controlled via U but not the incident flux of photons.
With regard to the tails in models for spectra (Equation 3.4) it
should be said that Equation 311 is compatible with the observation that tails

of X-ray spectra do not cross for different supply voltages [ Figure 3.3], while

other models would not necessarily 'satisfy this observation.
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With regard to modeling the dependency of characteristic spectral
Tines on U we refer to Compton [Reference 8] who suggests from experimental evidence

bj~(U/UO)n in Equation (3.5).

Heat Dissipation and Power Supply of X-ray Tubes

Below supply voltages of several MV most of the kinetic energy of the
electron beam is converted into heat and only a small fraction into
X-rays. Thus heat dissioation limits often X-ray output. Two
methods are used to allow high local heat dissipation. One is to cool
the anode material Tocally, for example with oil or water. Alternatively
the electron beam ismoved relative to the anode; this is accomplished
either by rotating the anode with up to 10,000 rpm or in a technique
currently under development [ Reference 5] by guiding the electron beam over a
large anode which encircles the target. The advantage of these latter
techniques is the small permissible focal spot size with a relatively
high power density; the disadvantages are either a rather limited
total power dissipation (rotating anode) or high equipment cost and
difficulties with electron beam stearing (moving beam).

A few words should be said about the power supply. In high
quality imaging systems it is desired to use DC supply voltage with
littel ripple (constant beam hardness). For high power outputs
(pulsed up to 100kW) it is obtained from 3 or 6-phase systems.
Additional electronic equipment controls supply voltage to within a
fraction of a percent. Residual voltage fluctuations will usually

contain some harmonics of the 1line voltage and possibly some flicker
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noise due to electronic equipment.

In order to minimize detector noise (Section3.4) and motion
artifacts, the production of X-rays is often pulsed. Pulse duration
is 1imited for a given flash energy by maximal cathode filament
current, space charge, and heat storage of target material and lies for
typical CT-scanners (GE 8800) between 1 and 12 msec. Note that for
an anode rotating with 10000 RPM heat will be deposited on a 60°
sector for a Tmsec pulse. If these pulses do not occur in certain
even intervals - so as to heat the anode evenly - the anode will warp
due to uneven heat deposition [Reference 5]. In conjunction with collimation
this may lead to beam swaying [Figure 3.3]. Furthermore, anode wear will be
uneven and the anode will develop microcracks.

A11 of these effects will lead to periodic variations of the X-ray
output. Braun [Reference 5] holds these mechanisms responsible for severe
artifacts in fourth generation CT-scanners. Note that probably
intensity and beam hardness vary as the angle of incidence of electron
changes (compare Equation 3.1 and 3.7).

As a final characteristic of X-ray tubes one should consider focal
spot size. Often the intensity of the focal spot is bimodai - possibly
as shown in Figure 3.5. In case of fan beams it is also clear that the
effective spot geometry will change in dependence on the direction within
the fan beam [Figure 3.6]. 1In closing it should be pointed out that
for the very high energy X-ray range (MV) linear accelerators and
Betatrons are necessary. They use either RF linear arrays of electric fields,
or magnetic fields with circular symmetry. In application to thick

objects they are essential.
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In retrospect many mechanisms contribute to uncertainty and hence
noise in the test signal - the X-ray beam. The uncertainty concerns
spectral composition, directional variations and uncertainty about
the precise place of origin of an X-ray photon. Since signal-to-noise
ratio 1imits acquisition of information the understanding of these
noise mechanisms is important.

Radioactive isotopes

Radioactive isotopes produce in most application much less

intensity than X-ray tubes. Acitivties of isotopes is measured in

Curie-units. One Ci corresponds to 3,7 - 1010 decays/sec. From typical

values of such sources we find a production of between 1010 and 10]]

rays/sec.

halflife activity/ci spot size -quanta

MeV

Cs - 137 30a .5 3 %3 .662

Co - 60 5.26a 2 2 Va2 1.17, 1.33

Ir - 192 74d 25 Z % B .296, .308, .316
468, .605

Table 3.2 after Glocker, [Reference 15, p 33-35]

For comparison a rotating anode tube at 100kV will produce

within a Tmsec pulse of .1A (typically they go up to .5A) in excess

of 1012 photons. This implies the potential of performing NDE

via tubes some four orders of magnitude faster than with any radioisotope.
It will be shown Tater that this potential can usually be fully

exploited by current detectors [Section3.4].

An attractive feature of above radioactive isotopes (Table 3.2) is their
short-term, say on a minute basis, stability and their simple and stable
spectrum. Despite this apparent advantage it appears doubtful at the
current time whether, or under what circumstances, performance superior
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to that with X-ray tubes could be achieved.

3.2 Properties of X-rays Absorption and Secondary Radiation

When X-rays travel through matter their intensity decreases due
to absorption, and scatter (and above 1.02 MeV pair production). The
relation of the decline of intensity of a monochromatic X-ray beam

passing through an object is well know to follow

I(x) = Iy(x) - e WX (3.14)

where u = u(2)is the attenuation coefficient and p the specific
dehsity. The coefficient p is composed of absorption t and scatter o

([Reference 15, p38])

u=T1+o0 (3.15)

and is dependent on wavelength X and chemical composition of the object.
For an object with fractions ¢ of atoms species i the absorption is

given by
Ho=p I o, — (3.16)
c

Some typical values for u/p for carbon, aluminum, silver and Tead are
given in Table 3.3.

Table 3.3 Specific Absorption u/p after McGonnagle Reference 32]; values are in
[eme/q].

A A Pb
Uequiv X /A g Ag g
100KV 12 151 168 1.36 515
41KV % 206 55 17,55 13.6
24 .67 i ‘325 1.92 9.7 55
17.37 71 61 5.22 28 140
12.3 100 | 137 141 73 77
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Note that attenuation coefficients do not necessarily decrease
monotonically with wavelength. This is particularly striking for heavy
elements such as Ag and Pb and is a result of the so called absorption
edges arising due to K, L, M etc shells of the atom (Figure 3.7). For
1ight elements such as C (e.g. Z=29, below Cu) the high energy K- edges
are at energies below 12 kV.

For us it is important to express y and its components t and
o as functions of A algebraically. The expressions found by
Compton [Reference 8] for 1 are useful. He finds, for the photoelectric
absorption depending on the particular absorption mechanism involved
(K shell, LI’ LII’ LIII’ etc are involved) for wavelength shor<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>